A note on "Sur le noyau de l'opérateur de courbure d'une variété finslérienne, C. R. Acad. Sci. Paris, sér. A, t. 272 (1971), 807-810"*

Nabil L. Youssef ${ }^{1,2}$ and S. G. Elgendi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
${ }^{2}$ Center for Theoretical Physics (CTP) at the Britich University in Egypt (BUE)
${ }^{3}$ Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
E-mails: nlyoussef@sci.cu.edu.eg, nlyoussef2003@yahoo.fr
salah.ali@fsci.bu.edu.eg, salahelgendi@yahoo.com

Abstract

In this note, adopting the pullback formalism of global Finsler geometry, we show by a counterexample that the kernel Ker_{R} of the h-curvature R of Cartan connection and the associated nullity distribution \mathcal{N}_{R} do not coincide, contrary to Akbar-Zadeh's result [1]. We also give sufficient conditions for Ker_{R} and \mathcal{N}_{R} to coincide.

Keywords: Cartan connection, h-curvature tensor, Nullity distribution, Kernel distribution.
MSC 2010: 53C60, 53B40, 58B20, 53C12.

1. Introduction and notations

Nullity distribution in Finsler geometry has been investigated in [1] (adopting the pullback formalism) and [5] (adopting the Klein-Grifone formalism). In 1971, Akbar-Zadeh [1] proved that the kernel Ker_{R} of the h-curvature operator R of Cartan connection coincides with the nullity distribution \mathcal{N}_{R} of that operator. This result was reappeared again in [2] and was used to prove that the nullity foliation is auto-parallel. Moreover, Bidabad and Refie-Rad [3] generalized this result to the case of k-nullity distribution following the same pattern of proof as Akbar-Zadeh's.

In this note, we show by a counterexample that Ker_{R} and \mathcal{N}_{R} do not coincide, contrary to Akbar-Zadeh's result. In addition, we find sufficient conditions for Ker_{R} and \mathcal{N}_{R} to coincide.

In what follows, we denote by $\pi: \mathcal{T} M \longrightarrow M$ the subbundle of nonzero vectors tangent to $M, \pi_{*}: T(\mathcal{T} M) \longrightarrow T M$ the linear tangent map of π and $V_{z}(T M)=\left(\operatorname{Ker} \pi_{*}\right)_{z}$ the vertical space at $z \in \mathcal{T} M$. Let $\mathfrak{F}(T M)$ be the algebra of C^{∞} functions on $T M$ and $\mathfrak{X}(\pi(M))$ the $\mathfrak{F}(T M)$ module of differentiable sections of the pullback bundle $\pi^{-1}(T M)$. The elements of $\mathfrak{X}(\pi(M))$

[^0]will be called π-vector fields and denoted by barred letters \bar{X}. The fundamental π-vector field is the π-vector field $\bar{\eta}$ defined by $\bar{\eta}(z)=(z, z)$ for all $z \in \mathcal{T} M$.

Let D be a linear connection on the pullback bundle $\pi^{-1}(T M)$. Let K be the map defined by $K: T(\mathcal{T} M) \longrightarrow \pi^{-1}(T M): X \longmapsto D_{X} \bar{\eta}$. The vector space $H_{z}(T M):=\left\{X \in T_{z}(\mathcal{T} M)\right.$: $K(X)=0\}$ is the horizontal space to M at z. The restriction of π_{*} on $H_{z}(T M)$, denoted again π_{*}, defines an isomorphism between $H_{z}(T M)$ and $T_{\pi z} M$. The connection D is said to be regular if $T_{z}(\mathcal{T} M)=V_{z}(T M) \oplus H_{z}(T M) \forall z \in \mathcal{T} M$. In this case K defines an isomorphism between $V_{z}(T M)$ and $T_{\pi z} M$.

If M is endowed with a regular connection, then the preceding decomposition permits to write uniquely a vector $X \in T_{z}(\mathcal{T} M)$ in the form $X=h X+v X$, where $h X \in H_{z}(T M)$ and $v X \in V_{z}(T M)$. The ((h)hv-) torsion tensor of D, denoted by T, is defined by $T(\bar{X}, \bar{Y})=$ $\mathbf{T}(v X, h Y)$, for all $\bar{X}, \bar{Y} \in \mathfrak{X}(\pi(\underline{M}))$, where $\mathbf{T}(X, Y)=D_{X} \bar{Y}-D_{Y} \bar{X}-\pi_{*}[X, Y]$ is the (classical) torsion associated with D and $\bar{X}=\pi_{*} X$ (the fibers of the pullback bundle are isomorphic to the fibers of the tangent bundle). The h-curvature tensor of D, denoted by R, is defined by $R(\bar{X}, \bar{Y}) \bar{Z}=\mathbf{K}(h X, h Y) \bar{Z}$, where $\mathbf{K}(X, Y) \bar{Z}=D_{X} D_{Y} \bar{Z}-D_{Y} D_{X} \bar{Z}-D_{[X, Y]} \bar{Z}$ is the (classical) curvature associated with D. The contracted curvature \widehat{R} is defined by $\widehat{R}(\bar{X}, \bar{Y})=R(\bar{X}, \bar{Y}) \bar{\eta}$.

2. Kernel and nullity distributions: Counterexample

Let (M, F) be a Finsler manifold. Let ∇ be the Cartan connection associated with (M, F). It is well known that ∇ is the unique metrical regular connection on $\pi^{-1}(T M)$ such that $g(T(\bar{X}, \bar{Y}), \bar{Z})=g(T(\bar{X}, \bar{Z}), \bar{Y})$ [2], [6]. Note that the bracket $[X, Y]$ is horizontal if and only if $\widehat{R}(\bar{X}, \bar{Y})=0$, where \widehat{R} is the contracted curvature of the h-curvature tensor of ∇.

Lemma 2.1. [2] Let \boldsymbol{T} and \boldsymbol{K} be the (classical) torsion and curvature tensors of ∇ respectively. We have:

$$
\mathfrak{S}_{X, Y, Z}\left\{\boldsymbol{K}(X, Y) \bar{Z}-\nabla_{Z} \boldsymbol{T}(X, Y)-\boldsymbol{T}(X,[Y, Z])\right\}=0
$$

where the symbol $\mathfrak{S}_{X, Y, Z}$ denotes cyclic sum over $X, Y, Z \in \mathfrak{X}(T M)$.
Let us now define the concepts of nullity and kernel spaces associated with the curvature \mathbf{K} of ∇, following Akbar-Zadeh's definitions [1].

Definition 2.2. The subspace $\mathcal{N}_{\mathbf{K}}(z)$ of $H_{z}(T M)$ at a point $z \in T M$ is defined by

$$
\mathcal{N}_{\mathbf{K}}(z):=\left\{X \in H_{z}(T M): \mathbf{K}(X, Y)=0, \forall Y \in H_{z}(T M)\right\}
$$

The dimension of $\mathcal{N}_{\mathbf{K}}(z)$ is denoted by $\mu_{\mathbf{K}}(z)$.
The subspace $\mathcal{N}_{\mathbf{K}}(x):=\pi_{*}\left(\mathcal{N}_{\mathbf{K}}(z)\right) \subset T_{x} M, x=\pi z$, is linearly isomorphic to $\mathcal{N}_{\mathbf{K}}(z)$. This subspace is called the nullity space of the curvature operator \boldsymbol{K} at the point $x \in M$

Definition 2.3. The kernel of \mathbf{K} at the point $x=\pi z$ is defined by

$$
\operatorname{Ker}_{\mathbf{K}}(x):=\left\{\bar{X} \in\{z\} \times T_{x} M \simeq T_{x} M: \mathbf{K}(Y, Z) \bar{X}=0, \forall Y, Z \in H_{z}(T M)\right\}
$$

Since $\mathcal{N}_{\mathbf{K}}$ and $\operatorname{Ker}_{\mathbf{K}}$ are both defined on the horizontal space, we can replace the classical curvature \mathbf{K} by the h-curvature tensor R of Cartan connection. Akbar-Zadeh [1] proved that the nullity space $\mathcal{N}_{\mathbf{K}}(x)$ and the kernel space $\operatorname{Ker}_{\mathbf{K}}(x)$ coincide for each point $x \in M$ at which they are defined. We show by a counterexample that the above mentioned spaces do not coincide.

Theorem 2.4. The nullity space $\mathcal{N}_{R}(x)$ and the kernel space $\operatorname{Ker}_{R}(x)$ do not coincide.
Let $M=\mathbb{R}^{3}, U=\left\{\left(x_{1}, x_{2}, x_{3} ; y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3}: x_{3} y_{1}>0, y_{2}^{2}+y_{3}^{2} \neq 0\right\} \subset T M$. Let F be the Finsler function defined on U by

$$
F:=\sqrt{x_{3} y_{1} \sqrt{y_{2}^{2}+y_{3}^{2}}} .
$$

Using MAPLE program, we can perform the following computations. We write only the coefficients Γ_{j}^{i} of Barthel connection and the components $R_{i j k}^{h}$ of the h-curvature tensor R. The non-vanishing coefficients of Barthel connection Γ_{j}^{i} are:

$$
\Gamma_{2}^{2}=\frac{y_{3}}{x_{3}}, \quad \Gamma_{3}^{2}=\frac{y_{2}}{x_{3}}, \quad \Gamma_{2}^{3}=-\frac{y_{2}}{x_{3}}, \quad \Gamma_{3}^{3}=\frac{y_{3}}{x_{3}} .
$$

The independent non-vanishing components of the h-curvature $R_{i j k}^{h}$ of Cartan connection are:

$$
\begin{gathered}
R_{223}^{1}=\frac{y_{1} y_{3}}{2 x_{3}^{2}\left(y_{2}^{2}+y_{3}^{2}\right)}, \quad R_{323}^{1}=-\frac{y_{1} y_{2}}{2 x_{3}^{2}\left(y_{2}^{2}+y_{3}^{2}\right)}, \quad R_{123}^{2}=-\frac{y_{3}}{2 x_{3}^{2} y_{1}} \\
R_{323}^{2}=-\frac{1}{2 x_{3}^{2}}, \quad R_{123}^{3}=\frac{y_{2}}{2 x_{3}^{2} y_{1}}, \quad R_{223}^{3}=\frac{1}{2 x_{3}^{2}} .
\end{gathered}
$$

Now, let $X \in \mathcal{N}_{R}$, then X can be written in the form $X=X^{1} h_{1}+X^{2} h_{2}+X^{3} h_{3}$, where X^{1}, X^{2}, X^{3} are the components of the vector X with respect to the basis $\left\{h_{1}, h_{2}, h_{3}\right\}$ of the horizontal space; $h_{i}:=\frac{\partial}{\partial x^{i}}-\Gamma_{i}^{m} \frac{\partial}{\partial y^{m}}, i, m=1, \ldots, 3$. The equation $R(\bar{X}, \bar{Y}) \bar{Z}=0, \forall Y, Z \in H(T M)$, is written locally in the form $X^{j} R_{i j k}^{h}=0$. This is equivalent to the system of equations $X^{2}=0, X^{3}=0$ having the solution $X^{1}=t(t \in \mathbb{R}), X^{2}=X^{3}=0$. As $\pi_{*}\left(h_{i}\right)=\frac{\partial}{\partial x^{i}}$, we have

$$
\begin{equation*}
\mathcal{N}_{R}(x)=\left\{\left.t \frac{\partial}{\partial x^{1}} \right\rvert\, t \in \mathbb{R}\right\} \tag{2.1}
\end{equation*}
$$

On the other hand, let $Z \in \operatorname{Ker}_{R}$. The equation $R(\bar{X}, \bar{Y}) \bar{Z}=0, \forall X, Y \in H(T M)$, is written locally in the form $Z^{i} R_{i j k}^{h}=0$. This is equivalent to the system:

$$
y_{3} Z^{2}-y_{2} Z^{3}=0, \quad y_{3} Z^{1}+y_{1} Z^{3}=0, \quad y_{2} Z^{1}+y_{1} Z^{2}=0
$$

This system has the solution $Z^{1}=t, Z^{2}=-\frac{y_{2}}{y_{1}} t$ and $Z^{3}=-\frac{y_{3}}{y_{1}} t,(t \in \mathbb{R})$. Thus,

$$
\begin{equation*}
\operatorname{Ker}_{R}(x)=\left\{\left.t\left(\frac{\partial}{\partial x^{1}}-\frac{y_{2}}{y_{1}} \frac{\partial}{\partial x^{2}}-\frac{y_{3}}{y_{1}} \frac{\partial}{\partial x^{3}}\right) \right\rvert\, t \in \mathbb{R}\right\} \tag{2.2}
\end{equation*}
$$

Comparing (2.1) and (2.2), we note that there is no value of t for which $\mathcal{N}_{R}(x)=\operatorname{Ker}_{R}(x)$. Consequently, $\mathcal{N}_{R}(x)$ and $\operatorname{Ker}_{R}(x)$ can not coincide.

According to Akabr-Zadeh's proof, if $X \in \mathcal{N}_{R}$, then, by Lemma 2.1, we have $R(\bar{Y}, \bar{Z}) \bar{X}=$ $\mathbf{T}(X,[Y, Z])$. But there is no guarantee for the vanishing of the right-hand side. Even the equation $g\left(R(\bar{Y}, \bar{Z}) \pi_{*} X, \pi_{*} W\right)=g\left(\mathbf{T}(X,[Y, Z]), \pi_{*} W\right), W \in H(T M)$, is true only for $X \in \mathcal{N}_{R}$ and, consequently, we can not use the symmetry or skew-symmetry properties in X and W to conclude that $g(R(\bar{Y}, \bar{Z}) \bar{X}, \bar{W})=0$. This can be assured, again, by the previous example: if we take $X=h_{1} \in \mathcal{N}_{R}(z)$ and $Y=h_{2}, Z=h_{3}$, then the bracket $[Y, Z]=-\frac{y_{3}}{x_{3}^{2}} \frac{\partial}{\partial y_{2}}+\frac{y_{2}}{x_{3}^{2}} \frac{\partial}{\partial y_{3}}$ is vertical and $\mathbf{T}\left(h_{1},\left[h_{2}, h_{3}\right]\right)=-\frac{1}{2 x_{3}^{2} y_{1}}\left(y_{3} \bar{\partial}_{2}-y_{2} \bar{\partial}_{3}\right) \neq 0$, where $\bar{\partial}_{i}$ is the basis of the fibers of the pullback bundle.

As has been shown above, \mathcal{N}_{R} and Ker_{R} do not coincide in general. Nevertheless, we have

Theorem 2.5. Let (M, F) be a Finsler manifold and R the h-curvatire of Cartan connection. If

$$
\begin{equation*}
\mathfrak{S}_{\bar{X}, \bar{Y}, \bar{Z}} R(\bar{X}, \bar{Y}) \bar{Z}=0 \tag{2.3}
\end{equation*}
$$

then the two distributions \mathcal{N}_{R} and Ker_{R} coincide.
Proof. If $X \in \mathcal{N}_{R}$, then, from (2.3), we have $R(Y, Z) X=0$ and consequently $X \in \operatorname{Ker}_{R}$. On the other hand, it follows also from (2.3) that $g(R(\bar{X}, \bar{Y}) \bar{Z}, \bar{W})=: R(\bar{X}, \bar{Y}, \bar{Z}, \bar{W})=R(\bar{Z}, \bar{W}, \bar{X}, \bar{Y})$. This proves that if $X \in \operatorname{Ker}_{R}$, then $X \in \mathcal{N}_{R}$.

The following corollary shows that there are nontrivial cases in which (2.3) is verified and consequently the two distributions coincide.
Corollary 2.6. Let (M, F) be a Finsler manifold and g the associated Finsler metric. If one of the following conditions holds:
(a) $\widehat{R}=0$ (the integrability condition for the horizontal distribution),
(b) $\widehat{R}(\bar{X}, \bar{Y})=\lambda F(\ell(\bar{X}) \bar{Y}-\ell(\bar{Y}) \bar{X})$, where $\lambda(x, y)$ is a homogenous function of degree 0 in y and $\ell(\bar{X}):=F^{-1} g(\bar{X}, \bar{\eta})$ (the isotropy condition),
then the two distributions \mathcal{N}_{R} and Ker_{R} coincide.
Proof.
(a) We have $\mathfrak{S}_{\bar{X}, \bar{Y}, \bar{Z}}\{R(\bar{X}, \bar{Y}) \bar{Z}-T(\bar{X}, \widehat{R}(\bar{Y}, \bar{Z}))\}=0$ [7]. Then, if $\widehat{R}=0$, (2.3) holds.
(b) If $\widehat{R}(\bar{X}, \bar{Y})=\lambda F(\ell(\bar{X}) \bar{Y}-\ell(\bar{Y}) \bar{X})$, then, by [4, (2.3) is satisfied.

Remark 2.7. It should be noted that the identity (2.3) is a sufficient condition for the validity of the identity (2.1) of [1].

References

[1] H. Akbar-Zadeh, Sur le noyau de l'opérateure de courbure d'une variété finslérienne, C. R. Acad. Sci. Paris, Sér. A, 272 (1971), 807-810.
[2] H. Akbar-Zadeh, Espaces de nullité en géométrie Finslérienne, Tensor, N. S., 26 (1972), 89-101.
[3] B. Bidabad and M. Refie-Rad, On the k-nullity foliations in Finsler geometry and completeness, Bull. Iranian Math. Soc., 37, 4 (2011), 1-18. ArXiv: 1101.1496 [math. DG].
[4] A. Soleiman, On Akbar-Zadeh's theorem on a Finsler space of constant curvature. ArXiv: 1201.2012 [math.DG].
[5] Nabil L. Youssef, Distribution de nullité du tensor de courbure d'une connexion, C. R. Acad. Sci. Paris, Sér. A, 290 (1980), 653-656.
[6] Nabil L. Youssef, S. H. Abed and A. Soleiman, A global approach to the theory of connections in Finsler geometry, Tensor, N. S., 71,3 (2009), 187-208. ArXiv: 0801.3220 [math.DG].
[7] Nabil L. Youssef, S. H. Abed and A. Soleiman, Geometric objects associated with the fundamental connections in Finsler geometry, J. Egypt. Math. Soc., 18(1) (2010), 67-90.

[^0]: *ArXiv Number: 1305.4498 [math.DG]

