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Abstract. In this note, adopting the pullback formalism of global Finsler geometry, we show by a
counterexample that the kernel KerR of the h-curvature R of Cartan connection and the associ-
ated nullity distribution NR do not coincide, contrary to Akbar-Zadeh’s result [1]. We also give
sufficient conditions for KerR and NR to coincide.
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1. Introduction and notations

Nullity distribution in Finsler geometry has been investigated in [1] (adopting the pullback
formalism) and [5] (adopting the Klein-Grifone formalism). In 1971, Akbar-Zadeh [1] proved that
the kernel KerR of the h-curvature operator R of Cartan connection coincides with the nullity
distribution NR of that operator. This result was reappeared again in [2] and was used to prove
that the nullity foliation is auto-parallel. Moreover, Bidabad and Refie-Rad [3] generalized this
result to the case of k-nullity distribution following the same pattern of proof as Akbar-Zadeh’s.

In this note, we show by a counterexample that KerR and NR do not coincide, contrary to
Akbar-Zadeh’s result. In addition, we find sufficient conditions for KerR and NR to coincide.

In what follows, we denote by π : TM −→ M the subbundle of nonzero vectors tangent
to M , π∗ : T (T M) −→ TM the linear tangent map of π and Vz(TM) = (Ker π∗)z the vertical
space at z ∈ T M . Let F(TM) be the algebra of C∞ functions on TM and X(π(M)) the F(TM)-
module of differentiable sections of the pullback bundle π−1(TM). The elements of X(π(M))
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will be called π-vector fields and denoted by barred letters X . The fundamental π-vector field is
the π-vector field η defined by η(z) = (z, z) for all z ∈ T M .

Let D be a linear connection on the pullback bundle π−1(TM). Let K be the map defined
by K : T (TM) −→ π−1(TM) : X 7−→ DXη. The vector space Hz(TM) := {X ∈ Tz(TM) :
K(X) = 0} is the horizontal space to M at z. The restriction of π∗ on Hz(TM), denoted again
π∗, defines an isomorphism between Hz(TM) and TπzM . The connection D is said to be regular
if Tz(T M) = Vz(TM) ⊕ Hz(TM) ∀ z ∈ T M . In this case K defines an isomorphism between
Vz(TM) and TπzM .

If M is endowed with a regular connection, then the preceding decomposition permits to
write uniquely a vector X ∈ Tz(T M) in the form X = hX + vX , where hX ∈ Hz(TM) and
vX ∈ Vz(TM). The ((h)hv-) torsion tensor of D, denoted by T , is defined by T (X, Y ) =
T(vX, hY ), for all X, Y ∈ X(π(M)), where T(X, Y ) = DXY −DYX −π∗[X, Y ] is the (classical)
torsion associated with D and X = π∗X (the fibers of the pullback bundle are isomorphic to
the fibers of the tangent bundle). The h-curvature tensor of D, denoted by R, is defined by
R(X, Y )Z = K(hX, hY )Z, where K(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z is the (classical)

curvature associated with D. The contracted curvature R̂ is defined by R̂(X, Y ) = R(X, Y )η.

2. Kernel and nullity distributions: Counterexample

Let (M,F ) be a Finsler manifold. Let ∇ be the Cartan connection associated with (M,F ).
It is well known that ∇ is the unique metrical regular connection on π−1(TM) such that
g(T (X, Y ), Z) = g(T (X,Z), Y ) [2], [6]. Note that the bracket [X, Y ] is horizontal if and only if

R̂(X, Y ) = 0, where R̂ is the contracted curvature of the h-curvature tensor of ∇.

Lemma 2.1. [2] Let T and K be the (classical) torsion and curvature tensors of ∇ respectively.
We have:

SX,Y,Z{K(X, Y )Z −∇ZT(X, Y )−T(X, [Y, Z])} = 0,

where the symbol SX,Y,Z denotes cyclic sum over X, Y, Z ∈ X(TM).

Let us now define the concepts of nullity and kernel spaces associated with the curvature K
of ∇, following Akbar-Zadeh’s definitions [1].

Definition 2.2. The subspace NK(z) of Hz(TM) at a point z ∈ TM is defined by

NK(z) := {X ∈ Hz(TM) : K(X, Y ) = 0, ∀Y ∈ Hz(TM)}.

The dimension of NK(z) is denoted by µK(z).
The subspace NK(x) := π∗(NK(z)) ⊂ TxM , x = πz, is linearly isomorphic to NK(z). This

subspace is called the nullity space of the curvature operator K at the point x ∈ M

Definition 2.3. The kernel of K at the point x = πz is defined by

KerK(x) := {X ∈ {z} × TxM ≃ TxM : K(Y, Z)X = 0, ∀Y, Z ∈ Hz(TM)}.

Since NK and KerK are both defined on the horizontal space, we can replace the classical
curvature K by the h-curvature tensor R of Cartan connection. Akbar-Zadeh [1] proved that the
nullity space NK(x) and the kernel space KerK(x) coincide for each point x ∈ M at which they
are defined. We show by a counterexample that the above mentioned spaces do not coincide.
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Theorem 2.4. The nullity space NR(x) and the kernel space KerR(x) do not coincide.

Let M = R
3, U = {(x1, x2, x3; y1, y2, y3) ∈ R

3 × R
3 : x3y1 > 0, y22 + y23 6= 0} ⊂ TM . Let F

be the Finsler function defined on U by

F :=

√
x3y1

√
y22 + y32.

Using MAPLE program, we can perform the following computations. We write only the
coefficients Γi

j of Barthel connection and the components Rh
ijk of the h-curvature tensor R.

The non-vanishing coefficients of Barthel connection Γi
j are:

Γ2
2 =

y3

x3
, Γ2

3 =
y2

x3
, Γ3

2 = −
y2

x3
, Γ3

3 =
y3

x3
.

The independent non-vanishing components of the h-curvature Rh
ijk of Cartan connection are:

R1
223 =

y1y3

2x2
3(y

2
2 + y23)

, R1
323 = −

y1y2

2x2
3(y

2
2 + y23)

, R2
123 = −

y3

2x2
3y1

,

R2
323 = −

1

2x2
3

, R3
123 =

y2

2x2
3y1

, R3
223 =

1

2x2
3

.

Now, let X ∈ NR, then X can be written in the formX = X1h1+X2h2+X3h3, where X
1, X2, X3

are the components of the vector X with respect to the basis {h1, h2, h3} of the horizontal space;
hi :=

∂
∂xi − Γm

i
∂

∂ym
, i,m = 1, ..., 3. The equation R(X, Y )Z = 0, ∀Y, Z ∈ H(TM), is written

locally in the form XjRh
ijk = 0. This is equivalent to the system of equations X2 = 0, X3 = 0

having the solution X1 = t (t ∈ R), X2 = X3 = 0. As π∗(hi) =
∂
∂xi , we have

NR(x) =

{
t
∂

∂x1
| t ∈ R

}
. (2.1)

On the other hand, let Z ∈ KerR. The equation R(X, Y )Z = 0, ∀X, Y ∈ H(TM), is written
locally in the form Z iRh

ijk = 0. This is equivalent to the system:

y3Z
2 − y2Z

3 = 0, y3Z
1 + y1Z

3 = 0, y2Z
1 + y1Z

2 = 0.

This system has the solution Z1 = t, Z2 = −y2
y1
t and Z3 = −y3

y1
t, (t ∈ R). Thus,

KerR(x) =

{
t
( ∂

∂x1
−

y2

y1

∂

∂x2
−

y3

y1

∂

∂x3

)
| t ∈ R

}
. (2.2)

Comparing (2.1) and (2.2), we note that there is no value of t for which NR(x) = KerR(x).
Consequently, NR(x) and KerR(x) can not coincide.

According to Akabr-Zadeh’s proof, if X ∈ NR, then, by Lemma 2.1, we have R(Y , Z)X =
T(X, [Y, Z]). But there is no guarantee for the vanishing of the right-hand side. Even the
equation g(R(Y , Z)π∗X, π∗W ) = g(T(X, [Y, Z]), π∗W ), W ∈ H(TM), is true only for X ∈ NR

and, consequently, we can not use the symmetry or skew-symmetry properties in X and W to
conclude that g(R(Y , Z)X,W ) = 0. This can be assured, again, by the previous example: if we
take X = h1 ∈ NR(z) and Y = h2, Z = h3, then the bracket [Y, Z] = − y3

x2

3

∂
∂y2

+ y2
x2

3

∂
∂y3

is vertical

and T(h1, [h2, h3]) = − 1
2x2

3
y1
(y3∂̄2 − y2∂̄3) 6= 0, where ∂̄i is the basis of the fibers of the pullback

bundle.

As has been shown above, NR and KerR do not coincide in general. Nevertheless, we have
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Theorem 2.5. Let (M,F ) be a Finsler manifold and R the h-curvatire of Cartan connection. If

SX,Y ,ZR(X, Y )Z = 0, (2.3)

then the two distributions NR and KerR coincide.

Proof. If X ∈ NR, then, from (2.3), we have R(Y, Z)X = 0 and consequently X ∈ KerR. On the
other hand, it follows also from (2.3) that g(R(X, Y )Z,W ) =: R(X, Y , Z,W ) = R(Z,W,X, Y ).
This proves that if X ∈ KerR, then X ∈ NR.

The following corollary shows that there are nontrivial cases in which (2.3) is verified and
consequently the two distributions coincide.

Corollary 2.6. Let (M,F ) be a Finsler manifold and g the associated Finsler metric.
If one of the following conditions holds:

(a) R̂ = 0 (the integrability condition for the horizontal distribution),

(b) R̂(X, Y ) = λF (ℓ(X)Y − ℓ(Y )X), where λ(x, y) is a homogenous function of degree 0 in y

and ℓ(X) := F−1g(X, η) (the isotropy condition),

then the two distributions NR and KerR coincide.

Proof.
(a) We have SX,Y ,Z{R(X, Y )Z − T (X, R̂(Y , Z))} = 0 [7]. Then, if R̂ = 0, (2.3) holds.

(b) If R̂(X, Y ) = λF (ℓ(X)Y − ℓ(Y )X), then, by [4], (2.3) is satisfied.

Remark 2.7. It should be noted that the identity (2.3) is a sufficient condition for the validity
of the identity (2.1) of [1].
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